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SUMMARY 

This paper considers the use of various finite differencing schemes for the computation of flows involving 
regions of recirculation. Standard first-order hybrid schemes, vector (or skew) schemes and second-order 
schemes are used to predict laminar flows in a channel containing a constriction and over a normal flat 
plate with a downstream splitter plate. In the former case the results are compared with those of other 
workers and with the implications of analytic theories for the viscous dominated flow around the sharp 
corner. 

Attention is concentrated on the effects of errors arising from the use of non-uniform grids and it is 
shown that higher-order differencing schemes are generally much less susceptible to these than the simpler 
schemes. The major conclusion is that for flows containing regions where pressure gradients largely balance 
the convective terms in the momentum equations, in addition to  other regions where convection and 
diffusion balance, higher order differencing schemes are likely to  be essential if accurate predictions are 
required on grids without excessive numbers of nodes. It is argued that similar conclusions must hold for 
high Reynolds number turbulent flows. 

K E Y  WORDS Finite Differencing Viscous Flow Flow with Recirculation 

1. INTRODUCTION 

Numerical predictions of complex turbulent flows, even those involving significant regions of 
separation, are becoming commonplace. However, it is generally agreed that in addition to the 
uncertainties concerning the turbulence modelling required, the numerical problems associated 
with such flows are usually much more serious than those encountered in solving, say, 
boundary-layer type flows. The most recent extensive exercise in comparing numerical predictions 
with experiments was the two-part AFOSR-HTTM Stanford Conference on Complex Turbulent 
Flows, fully reported by Kline et a/.' It is significant that despite the industrial importance of 
separated flows, only three data sets were considered adequate for comparison with numerical 
predictions (compared with 63 for attached flows). In the particular one picked as a central test 
case, turbulent flow down a rearward facing step, variations in numerical predictions were 
attributed as much to numerical aberrations as to differences in turbulence models used. Indeed, 
one exercise consisted of asking the computors to use an identical, specified model (the ubiquitous 
'k-6' model) to compute this flow. The resulting predictions varied significantly, even in cases 
where predictors had used very similar grids. 

* Present address: Shell International Petroleum Maatschappy, EP22.1, P.O. Box 162, 2501 AN, 
The Hague, Holland 

0271-2091/87/080793-31$15.10 
0 1987 by John Wiley & Sons, Ltd. 

Received 16 August 1986 
Revised 19 November 1986 



794 I. P. CASTRO AND J. M. JONES 

At least some of these differences were attributable to fundamental differences in numerical 
techniques, particularly in the finite-difference formulations used. (No-one attempted a finite- 
element computation for this flow.) Similar differences were also noted even in predictions of 
ostensibly less complex flows which could be conveniently attacked using either parabolic 
(marching) or elliptic (iterative) techniques. It was evident then (1980/8 1) that numerical viscosity 
effects, ‘rediscovered’ many times over the past two decades, could be very significant in 
calculations of engineering flows. Since practically all commercial or even ‘research’ codes then 
available for such flows used necessarily non-uniform grids and only zero- or first-order accurate 
differencing of the convective terms in the governing equations, there was clearly considerable 
incentive to develop more accurate, but still robust, numerical techniques for such flows. 

The deficiencies of the standard, first-order, hybrid differencing schemes commonly embodied 
by many engineering codes have been increasingly emphasized over the last decade’ and a 
number of more accurate formulations have been proposed. One of the first was the so-called 
‘skew’ (or ‘vector’) scheme discussed by Raithby and Torrance3 and R a i t h b ~ . ~  This was developed 
to reduce the numerical errors which can arise if significant gradients of the dependent variable 
exist normal to the streamlines and the flow is oblique to the mesh. It has been extended and 
applied to a number of complex flow problems by, for example, Lillington5 and Castro et ~ 1 . ~  
Alternative ‘higher-order’ schemes have been suggested by L e ~ n a r d , ~  Hodge et aL8 Thompson 
and Wilkes’ and Leschziner” among others. Rather than taking explicit account of the flow 
direction as the vector schemes do, the techniques suggested by these authors all use additional 
nodal points on the grid lines through the central point but outside the basic five point star 
employed by standard hybrid schemes. 

The general character of the various finite difference methods can be deduced from studies of 
simple model equations which mimic the Navier-Stokes equations; recent examples of this 
approach can be found in References 11 and 12, but it is not generally possible to quantify the 
numerical errors which will arise in full predictions of the equations. This fact has led to a 
number of recent exercises in which workers have been invited to use their particular techniques 
to solve a prescribed flow problem. Unfortunately the results of such comparisons are often 
rather inconclusive and the difficulties surrounding such exercises are now well recognized. 
Ideally, of course, one would like to be able to compare numerical predictions of complex flows 
with exact solutions but there are, as is well known, very few exact solutions of the Navier-Stokes 
equations for flows containing regions of recirculation. We do not, incidentally, hold the view 
that laminar flow predictions are useless for assessing likely numerical errors in high Reynolds 
number turbulent flows. If the particular flow and Reynolds number are chosen sufficiently 
carefully, we believe that errors in momentum equation solutions can be directly comparable to 
those that occur in more practical cases. This can be illustrated by reference to the flow studied 
by Castro et ~ l . , ~  a laminar flow around a normal flat plate with a long central downstream 
splitter plate. At Reynolds numbers around 100, the separated flow region is of a very similar 
size to that which occurs in the corresponding high Reynolds number (e.g. lo5) turbulent flow. 
The irrotational flow surrounding the ‘plate + separated wake’ must therefore be closely similar 
in the two cases, so that numerical errors in solution of the momentum equations will be similar. 
Even within the wake, the ‘average’ eddy viscosity in the turbulent case must be of the same 
order as the laminar viscosity in the low Reynolds number case (for Re % 100) so that, again, 
numerical errors will be similar in an overall sense. This flow typifies many real flows of engineering 
interest which are computationally difficult from a numerical point of view. It contains regions 
in which convective terms balance ‘source’ terms (i.e. convection vs. pressure gradients in the 
momentum equations) and regions in which convection is balanced largely by diffusion (i.e. the 
turbulent Reynolds stress terms, which are often diffusive-like). Maintaining numerical accuracy 
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and stability in both flow regimes simultaneously is one of the basic difficulties in computational 
approaches to complex flows of this sort. 

Although there are no non-trivial recirculating flows for which exact analytic solutions are 
available, there has been considerable progress in developing asymptotically correct solutions 
for some kinds of bluff-body flows. Theories are usually based on the work of Stewartson (e.g. 
Reference 13); external flows like the laminar flow over a circular cylinder or flat plate have been 
studied by Smith,14*’ who has also obtained solutions for the (upstream) flow over constrictions 
in pipes and channels.16 In view of the difficulties in prescribing appropriate numerical boundary 
conditions in the far field of free flows (e.g. compare Reference 17 with Reference 18), internal 
flows are especially attractive as possible test cases against which to study the performance of 
numerical techniques. 

The major objective of the work described in this paper was to assess the advantages and 
disadvantages of some of the relatively new ‘higher-order’ finite differencing techniques, by 
applying them to complex, recirculating flows of the kind described above. We have concentrated 
on the normal flat plate flow previously studied6 and the step flow studied by Dennis and 
Smith.” Ordinary hybrid differencing schemes, vector schemes and a higher-order scheme akin 
to that of Hodge et aL8 have been used, and the numerical errors assessed by comparison 
with analytic solutions where possible, by high-order calculations of predicted momentum 
balances20’21 and by some more straightforward analysis of the finite-difference equations. The 
analytic comparisons are with detailed solutions of the Stokes’ flow problem in regions near 
sharp corners. Here the flow can be described by a stream-function equation, V4$ = 0, for which 
there has been some relevant analysis2’ An additional benefit of this latter rather novel aspect 
of the work is the verification that the differenced equations are properly set-up near the 
corners-vector differencing schemes, in particular, require considerable care in this respect. 

It should be emphasized that the intention in this work was not simply to produce predictions 
for the chosen flows which were as accurate as possible. There is no doubt that more specialized 
techniques (e.g. grid transformations) ‘tuned’ by using particular features of the flow geometry, 
would enable more accurate and more efficient predictions to be made.* However, such an 
approach would be inevitably much less general. Rather, recognizing that general engineering 
codes usually embody a single particular finite difference scheme despite a possibly wide range 
of application, we have concentrated on typical examples of the former, testing them by choosing 
particular problems which embody the more serious numerical difficulties typical of very many 
real engineering flows. 

Section 2 outlines the finite differencing methods used and includes a relatively straightforward 
(non-dimensional) analysis of the size of the truncation eriors corresponding to each. Attention 
is concentrated on the effects of non-uniform grid spacing, since in practice it is generally not 
possible to use uniform meshes in engineering calculations. In Sections 3 and 4 typical results 
of our computations are presented and discussed, with conclusions summarized in Section 5. 

2. THE FINITE DIFFERENCE SCHEMES 

2.1. Preliminaries 

It is common practice to write the (two-dimensional) conservation equations for fluid flow, 
heat energy, scalar transport etc., in the form 

*Since the present work was completed Mei and P l ~ t k i n * ~  have reported some calculations of just that kind, using the 
streamline/vorticity formulation. They used an appropriate co-ordinate transformation and predicted the ‘Dennis and 
Smith’ flow studied in the present work, with results very similat to those reported here. 
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where 4 is the dependent variable, s4 is a source term and rx,y are ‘diffusivities’. In a laminar 
flow this represents the momentum equations only, so that 4 is u or u, rx,y is the laminar viscosity, 
v and s4 is the pressure-gradient term. If the flow is turbulent, momentum equations in the 
form of (1 )  imply assumptions about the nature of the turbulence, for the rx,y are then effectively 
turbulent eddy viscosities. Although there are many turbulence models which eschew the use of 
eddy-viscosity (e.g. Bradshaw et a l . ’ ~ ~ ~  alternative leads to equations of hyperbolic type) it 
remains true that the majority of codes in engineering practice use elliptic formulations like 
equation (l), and solve each relevent equation using the same numerical technique. The coupled 
problems of determining the pressure field and maintaining continuity are often dealt with by 
deriving a pressure perturbation equation, casting it in a form similar to equation (1) and solving 
it using identical algorithms to those used for the basic equations. 

We are not concerned here with the precise details of the algorithms used to solve the 
finite-differenced forms of the differential equations. Provided that these lead to a converged 
solution (in some sense), the accuracy will depend solely on the nature of the differencing methods 
used. Certainly, the adequacy of the solution algorithm will often depend on the latter-some 
differencing methods will be numerically stable only if solved by a certain type of algorithm. 
However, we believe that these two aspects of the prediction technique are sufficiently separable 
to enable sensible study of the one to proceed without too much reference to the other. In the 
present work, a standard alternate direction implicit (ADI) method has been used in all cases, 
with the well-known SIMPLE algorithm linking the pressure field and mass ~ o n t i n u i t y . ~ ~  

Equation (1)  can be written in finite-difference form by integrating over finite control volumes, 
like that shown in Figure 1, so that 

with the assumption that s4 can be assumed constant over the whole cell. The nodes which 
contribute to the summation term depend on the particular choice of finite-differencing 
scheme, as do the values of the multiplying coefficients ( A J ,  etc.). These contain convective and 
diffusive flow rates. For standard central or one-sided differencing schemes usually only the four 
immediately adjacent nodes (labelled E, W, N, S in Figure 1 for obvious reasons) are used, 
enabling equation (2) to be solved implicitly in the x and y directions in turn using standard 
tridiagonal algorithms (the AD1 scheme referred to above). For higher-order schemes, additional 

AX, 

Figure I .  Mesh geometry. Control volume boundaries (containing w,e, n, s) are midway between adjacent boundaries 
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nodes must be used and, in the present work, to allow use of the same solution algorithms the 
extra terms arising under the summation in equation (2) are lumped into the source term (sl) 
and therefore included explicitly. If the order of the differencing scheme were increased 
substantially, this would be a very inefficient procedure-the coefficient matrix would be 
increasingly less sparse-but in the present study it was found to work reasonably well, although 
convergence rates were undoubtedly rather slower with the higher-order schemes. It is interesting 
to note in this context that recent work by Marquisz6 has suggested that for higher order 
differencing schemes using a nine-point star, a pentadiagonal algorithm was no more efficient 
than the standard tridiagonal algorithm. 

All the differencing schemes used the same prescription for the diffusive fluxes in equation (1). 
Integrating the axial component, for example, over the control volume in Figure 1 gives 

and the usual central difference approximation was used for each derivative, e.g. 

On a uniform mesh system (Axi = Axi+ the resulting error in 4,.. is of second order in Ax. 
In the more common case of an unequal mesh, the error term is of first order in Ax. Note that 
the diffusive fluxes in this formulation are conservative, in the sense that the flux out of the right 
hand boundary of the ith cell is identical to that into the left-hand boundary of the (i + 1)th 
cell. 

In two dimensions, there is an additional error term arising from the unequal mesh spacing 
in the y-direction. This can be written” 

+Ayj(ry - 1)- aZR, [ rZIi,; 

The source term s4 was treated as constant over the control volume. In laminar flows, s4 
is generally only the pressure gradient and, as usual, the present scheme employed a staggered 
mesh so that pressure nodes coincided (on a uniform mesh) with the boundaries of the velocity 
control volumes. Then 

-dxdy (for the axial momentum equation) 
s@ = J ~ v o l .  :: 

and this is put equal to Ay(p, - p w ) ,  where p e  and pw are known explicitly. On a non-uniform 
mesh this value is not exactly the same as that at the centre of the velocity control volume, for 
the pressure nodes do not then coincide exactly with the velocity control volume boundaries. 
It can be shown that the first order error term consists of a part, 

arising from the non-uniform x-spacing and a second part, 

arising from the non-uniform y-spacing. For a uniform mesh, the error is second order. 
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For both diffusive and source terms, therefore, the usual schemes are second-order accurate 
for uniform mesh systems but first-order accurate otherwise, provided that the control volume 
boundaries are located midway between adjacent nodes. Additional error terms arise if the latter 
is not true. 

It is, of course, the convective terms in equation (1) which generally lead to the most severe 
accuracy limitations for, as is well known, central difference formulations for these give unphysical 
oscillations in the solution once the mesh Peclet number (Pe, = uiAx i /T)  exceeds two. In the 
present study, the differences between different schemes lie largely in the methods used to 
discretize these terms; for completeness these are described separately below, but readers who 
are familiar with the details could move directly to section 2.5. 

2.2. The standard hybrid scheme ( H  YDS)  

The well-known hybrid scheme originally suggested by Allen and SouthwellZ8 uses the 
(conservative) upwind scheme if the mesh Peclet number exceeds two, with the real diffusive flux 
contribution being ignored because the resulting error term is at least as large as that,29 whereas 
central differencing is used at  lower mesh Peclet numbers. This 'smart' upwind scheme has been 
rediscovered many times and for simple scalar transport in one dimension it gives the correct 
asymptotic solution at very low and very high Reynolds numbers (Taylor series expansions, 
indicating the order of the error terms, are not appropriate in the latter case). It does not, 
however, necessarily lead to correct results at high Reynolds numbers for a non-linear equation 
(see Reference 30, for example) and it is well known that in the presence either of significant 
source terms, or of strong cross-flow gradients in two-dimensional cases coupled with mean flow 
not closely aligned with the grid co-ordinates, the first-order numerical viscosity error terms can 
be large. It is for these reasons that higher-order,schemes for the convective terms have been 
developed in recent years. 

2.3. The vector (skew) differencing schemes ( V D S )  

All vector schemes previously studied are essentially developments of the original proposals of 
R a i t h b ~ , ~  who sought a method of reducing the magnitude of the first-order errors which often 
arise in two-dimensional problems. He suggested a scheme in which, when Re, exceeds two, the 
value of 4,, say, is calculated by interpolation between adjacent upstream nodes in a way explicitly 
dependent on the flow angle. Thus, in Figure 1, if tan-'(u,/u,) < 2Ayj /Axi+  ', 4, is linearly 
interpolated between +i,j and $ J ~ , ~ -  '. 

It can be shown that such a scheme is no more accurate than HDS on the basis of the order of the 
leading error terms, but the magnitude of these terms can be much lower than in standard 
upwinding because they contain only gradients parallel to the streamline. A principle cause of false 
diffusion is therefore essentially limited. Note that if u/v >> 1 the scheme reduces to HDS. It should 
also be emphasized that in an unequal mesh there is a zero-order error term (if the scheme 
maintains conservation) just as for the HDS. However, tests on model problems have 
demonstrated the increased accuracy of this ~ c h e m e , ~ . ~ ~ ~ ~  but since it reduces to the standard HDS 
when u/v >> 1 there remains the problem of the deleterious effects of significant source terms. 

Lillington' has suggested a procedure which removes this difficulty by taking account of the 
source-produced change in 4 along the streamline. If the interpolated value of 4, is $:, say, then the 
modification amounts to putting 

4 e  = 4: + J e  (~/pu,)ds,  
i J  
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where us is the stream velocity and S is a source correction, taken by using 

( S / W S ) ~ ~  = S S i , j / ( P u , ) e ,  s‘ i , j’  

i.e. by considering S to be a control-volume-averaged property, s is the distance between the i,p 
interpolation point and thee point (see Figure 1). It can then be shown that the scheme retains first- 
order accuracy and remains conservative even on a non-uniform mesh. 

In the work presented here, both the standard VDS (described in more detail in References 5 and 
6 )  and this source-corrected version (VDSC) are used. Both can entail the use of nodal values 
additional to the nearest four used by the HYDS/CDS schemes and neither are invariably 
diagonally dominant. As mentioned earlier, the additional nodal values are taken from the 
previous iteration solution and terms including them are lumped explicitly with the source term on 
the right-hand side of equation (2). This helps to maintain stability; it is rather like a ‘deferred 
corrector’ scheme. It can be shown that the source correction amounts in some circumstances to an 
effective shift of the 4 nodes by half a cell width. In the case of unidirectional flow, in which 
convection is balanced largely by a pressure gradient, this therefore leads to an effective shift of the 
velocity nodes towards the pressure nodes, which is known to be destabilizing. It is consequently 
not surprising that in some of our calculations at high Reynolds numbers converged solutions 
could only be obtained if less than the whole of the source correction term were included. 
Alternative algorithms to the standard AD1 method used may have reduced this difficulty 
somewhat. 

Finally, it is emphasized that although the size of the error terms can be substantially reduced 
with VDSC, it remains formally only a first-order scheme, compared with the second-order nature 
(on a uniform mesh) of the diffusion and source term differencing techniques. This is perhaps a 
major reason for the development of alternative ‘higher-order’ schemes, outlined below. 

2.4, Higher-order differencing schemes (HODS)  

two additional nodes one of which is downstream, to difference the convective term by 
One of the first formally higher-order schemes to be suggested is due to Leonard.’ This uses 

or an equivalent expression if u < 0. On a uniform grid this is third-order accurate, but since a 
downstream value is used (d i  + 1) the scheme exhibits unphysical spatial oscillations (for Re > 3). An 
alternative form of this QUICK procedure is 

Formally this is only second-order accurate, but the coefficient multiplying the Ax:  error term is 
very small ( - 1/24). On non-uniform grids both these schemes become only zero-order accurate, as 
shown later. 

Hodge et a1.’ suggested a three-point scheme which is second-order on a uniform grid: 

and similarly for u < 0. On a non-uniform grid this becomes first-order accurate, so seems more 
consistent with the usual scheme used for the diffusive terms. Like VDS and QUICK, this scheme is 
not tridiagonal, but again the convective terms can be appropriately split so that it becomes both 
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tridiagonal and diagonally dominant, with the additional terms lumped explicitly into the source 
term. It should be noted that in two dimensions this scheme retains the same order of accuracy, 
although as usual there are some additional contributions to the error terms if the grid is non- 
uniform in both directions. 

In the present work, numerical computations have been made using this latter scheme (called 
HODS, for convenience) since it is, formally at least, consistent with the accuracy of the diffusive 
and source term approximations and is often rather more stable than QUICK.’ 

2.5. The leading error terms 

It is instructive to compare the error terms which arise in each of the schemes outlined in the 
previous sections. This can be done by straightforward. applications of Taylor’s expansion. We 
concentrate here on the one-dimensional situation, but allow for a non-uniform grid in which the 
ratio of successive mesh spacings is Axi+ ,/Axi = r .  The control volume boundaries lie midway 
betweer. adjacent nodes. This minimizes the errors in all cases, with conservation maintained 
throughout. Note that in two dimensions, if the y-grid is also non-uniform, further error terms 
sometimes arise, but these are generally of the same order  as those given below, so do not formally 
degrade the scheme’s accuracy (e.g. see section 2.1). 

For the diffusion term, it can be shown that the formulation described in section 2.1 leads to 

where the suffix c refers to the calculated value and C, = 1, C, = 2(r - 1)/3(r + 1) and C, = 
(1 + r3)/3(1 + Y ) ~ .  In the case of the convective term, the calculated first gradient can be written 

In both cases the ‘ideal’ scheme would have Co = 1 and C,, C2 = 0. The actual values of the 
coefficients C,, C, and C, for the convective term are given in Table I, where the two alternative 
QUICK formulation are labelled ‘1/6’ and ‘1/8’ (see equations (3) and (4)). Figures 2(a)-(c) show 
the variations of these coefficients as r varies between 0.5 and 1.5 and Figure 3 shows the 

Table I. Coefficients of error terms in finite difference representation of the first derivative. Values for 
uniform grid ( r  = Axi+ JAxi = 1 )  are shown in brackets 

Scheme Cl 

UPW 
- 2  

(-- 1/21 ( 1  + r)’ 

HODS 
- ( r -  1 )  
r ( r  + 1 )  

(0) 
2(r2  - 2r - 1) 

3r2(1 + r)’ ( -  1/31 

3r2 + 6r - 1 3r4 - 6r2 + 2r + 1 

4r2(r + 1)’ 

r6 + 4r3 - 3r2 - 3r - 1 

6r3(1 + r)3 ( - 1/24) (0) 
QUICK 
I 1  18) 4r(r + 1) 

( 1 )  
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Figure 2. Error term coefficients for the convective term: .........., upwind (UDS); ----, central (CDS); -, 
higher order upwind (HODS); QUICK (1/8). (a) C,; (b) C,; (c) C,.See equation (6) QUICK (l/6); 
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Figure 3. Error term coefficients for the diffusion term ( C ,  is unity always); see equation (5) 

corresponding results for the diffusive term errors. Note that in one dimension the vector schemes 
reduce to the standard upwind scheme, so are not included explicitly in the Figures. Note also that 
these results all assume that u,, u, > 0; if both are negative the graphs would be inverted about the 
r-axis, whereas if u, and u, had opposite signs additional errors would arise. Indeed normally the 
formal order of accuracy of the approximations would then be reduced by one.” 

Now it is recognized that such an analysis has distinct limitations in its usefulness in assessing 
likely levels of differencing-induced errors in solutions of the (non-linear) Navier-Stokes 
equations. The actual errors will depend not only on the values of the coefficients but also on the 
size of the multiplying differentials. However, the results shown in Figure 2 are a clear indication 
that provided mesh expansion ratios are not too high the Hodge et a!.* HODS scheme is likely 
to be at least as accurate as central differencing, though not, perhaps, quite as good as the 
QUICK schemes. The major differences in the coefficients for HODS and QUICK are: 

(i) with u > 0 and r < 1 (or u < 0 and r > 1) the coefficients of the first-order term (C,) are of 

(ii) the coeficients of the second-order term (C, )  have the same trends, but the HODS value is 

Although it could be argued that in a region where u > 0 and r > 1 (i.e. the mesh is expanding in 
the flow direction) HODS errors on the first- and second-order terms are of opposite signs so will 
tend to cancel-unlike the CDS and QUICK cases-it must be emphasized that this would only 
occur if the second and third derivatives of 4 had the same sign. Finally, the deficiencies of the 
standard upwind scheme are obvious from these results. It is worth noting in particular that C, 
differs from unity by less than 10 per cent only if mesh expansion ratios are within the range 
0.8 < r < 1.2, so that even on grids with quite small expansion ratios there are significant zero-order 
errors in the convective term approximation. 

Much of the above is well known, but its inclusion here serves to emphasized some of the 
reasons for seeking higher-order differencing schemes. 

opposite signs (Figure2(b)). 

always more negative (Figure 2(c)). 

3. THE FORWARD-FACING STEP FLOW 

3.1. Geometry and Gridding 

Figure 4 defines the geometry of the first problem to be discussed. A fully developed flow in a 
two-dimensional channel is distorted by the presence of a severe symmetric constriction in the 
channel, which provokes upstream separation and, at  a sufficiently high Reynolds number, a 
further separation just downstream of the convex corner. The Reynolds number is defined as 
umh/v,  where u, is the mean velocity upstream (2/3 times the peak, centre-line value) and h is the 
channel half-height. The step height is h/2.  

As mentioned earlier, an analytic solution for the region x < 0 (upstream of the step) has been 
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Figure 4. Geometry of forward facing step in a two-dimensional channel. Mean inlet velocity is 2U0/3 

obtained by Smith;16 it is asymptotically exact for Re>> 1. Further, Dennis and Smithlg have 
undertaken a very careful numerical study of the same flow, using higher-order ‘splitting’ 
techniques on the vorticity/stream function equations3’ with a range of uniform grids with mesh 
spacings down to h/80. They used Richardson extrapolation to obtain final numerical solutions, 
and since at the highest Reynolds numbers these solutions agreed closely with the analytic results it 
can be safely assumed that their results are accurate throughout the Reynolds number range 
for x < 0. Downstream of the step, however, Dennis and Smith state that their solutions are 
probably not adequate. We return to this point in due course. 

The Dennis and Smith work showed clearly that extending the inlet and/or outlet boundaries 
beyond x = 2 h  had no effect on the resulting solutions, so in the current work the solution 
domain was confined to - 2h < x < 2h, 0 < y < h, with x, y = 0 at the base of the step. The outlet 
boundary condition was simply &/ax = 0 (and hence u = 0 from the continuity equation) and 
on the lower boundary symmetry conditions were imposed-du/ay = 0, u = 0. A specified 
parabolic velocity profile was used at the inlet, with u = u = 0 on all walls. In the case of the 
HODS scheme, simple first-order upwinding was used at  boundaries where appropriate; checks 
showed that more accurate and complex specifications (requiring more ‘image’ nodes, for example) 
had no significant effect on the solutions. Checks were also made to ensure that extensions of 
the inlet and outlet boundary locations did not affect the results. 

During the course of the work various gridding arrangements were used, but attention is 
concentrated here on the results obtained using essentially two x-grids and three y-grids, the 
co-ordinates of which are listed in Table 11. Note that the coarsest grid, G3, had uniform mesh 
expansion (or contraction) ratios of about 1.1 in both directions, with Ax, Ay = 0.012h at  the 
corner. The other grids, G1 and G2, which had idential x-nodes but different y-nodes, had 
somewhat higher (and non-uniform) expansion ratios. At the corner, Ax/h was 0.001; Ay/h = 0.007 
and 0.003 for G1 and G2, respectively. The mesh spacings were arranged noting that the regions of 
maximum gradients in the velocities would occur largely near y = 0, x < 0 and y = 0.5h, x > 0. 
Henceforth all mesh spacings are normalized by h. 

Since the plotting of overall streamline patterns is not generally a very sensitive test of the 
accuracy of numerical solutions of such problems, we prefer to compare the results obtained using 
the various differencing schemes by looking at  some of the quantitative features of the flow. These 
include, for example, the position of the upstream separation point, the variation of wall vorticity, 
axial and transverse velocity profiles at various critical positions and pressure distributions. 
Dennis and Smith” presented the first two of these for Reynolds numbers between 10 and 2000, 
so it is natural to concentrate on those quantities, for they allow us to make a direct comparison 
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Table 11. Nodal values in grids used for the step flow problem. See Figure 1 for co-ordinate definitions 

GI, 
x < o  

- 2.000 
- 1.866 
- 1.598 
- 1.368 
- 1.170 
- 0.999 
- 0.853 
- 0.727 
-0.618 
- 0.525 
- 0.445 
- 0.376 
-0.316 
- 0.265 
- 0.22 1 
-0.183 
-0.151 
- 0.123 
- 0.099 
- 0.078 
- 0.060 
- 0.045 
- 0.032 
- 0.022 
- 0.015 
- 0.010 
- 0.0064 
- 0.0038 
-0'0019 
- 0.0005 

0.0005 
0.00 1 7 
0.0033 
0.005 
0.0075 
0.0 10 
0.0 14 
0.018 
0.023 
0.030 
0.038 
0.048 
0.060 
0.075 
0.094 
0.117 
0.145 
0180 
0.222 
0.275 
0.340 
0420 
0519 
0.64 1 
0.790 
0.975 
1.202 
1.482 
1.827 
2.000 

0.0 
0.0 1 
0.03 
0.055 
0.08 
0.1 1 
0.15 
020 
0.25 
030 
035 
0.39 
0.425 
045 
0.465 
0.48 
0.49 
0.4965 
05035 
0.5 1 
0.52 
0.535 
0.55 
0.575 
0.6 1 
0.65 
0.70 
0.75 
0.80 
0.86 
0.925 
0.975 
1 .oo 

0.0 
0.002 5 
0.0065 
0.0125 
0.0235 
0.038 
0.0565 
0.08 15 
0.1175 
0.168 
0.2385 
0.3 1 1 
0.363 
0.400 
0.427 
0.446 
0.4605 
0.47 15 
0.480 
0.4865 
0.49 1 5 
0.4955 
0.4985 
0501 5 
0.5045 
0.5085 
0.5135 
0.520 
0.5285 
0.5395 
0.554 
0.573 
0.5975 
0629 
0.6705 
0.7335 
0.805 
0.935 
1 a00 

- 2.000 
- 1.905 
- 1.714 
- 1.542 
- 1.385 
- 1.244 
- 1.115 
- 0.999 
- 0.894 
- 0.798 
- 0.712 
- 0.633 
- 0.562 
- 0.498 
- 0.440 
- 0387 
- 0339 
- 0296 
- 0.257 
- 0.221 
-0.189 
- 0.160 
- 0.133 
-0'109 
- 0.088 
- 0.068 
- 0.050 
- 0.034 
- 0.019 
- 0.006 

0.006 
0.019 
0.034 
0.049 
0.066 
0.085 
0.106 
0.128 
0.152 
0.179 
0.208 
0.240 
0275 
0.313 
0.355 
0.40 1 
0.45 1 
0.505 
0.565 
0.630 
0.701 
0.779 
0.864 
0.957 
1.059 
1.170 
1.291 
1.424 
1.569 
2.000 

0.000 
0.0135 
0.040 
0.0685 
0.0995 
0.1335 
0.1715 
0.213 
0.2505 
0.2845 
0.3155 
0.3435 
0.3685 
0.392 
0.4135 
0.433 
0.4505 
0.4665 
0.48 10 
0.4940 
0.5060 
0.5190 
0.5335 
0.5495 
0.567 
0.5865 
0.6080 
0.6365 
0.6570 
0.6855 
0.7165 
0.7505 
0.7880 
0.8295 
0.8750 
0.9250 
0.9750 
1.000 

between the present predictions and the 'baseline' solutions which are believed to be accurate 
(for x < 0). 

3.2. Solutions for x < 0. Wall vorticity and separation 

At Re = 100, all the schemes were found to yield good agreement with the Dennis and Smith 
results on the finest grids used. Further, the HODS and VDSC scheme results indicated, on the 
finest grids, a second very small vortex in the (concave) corner ( x  = y = 0). This was not obtained by 
Dennis and Smith, whose finest grid, although it was uniform, had Ax = Ay = 0.0125. In the present 
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case the Ax spacing at the step for the finest grid was only 0.001, although there where only 30 
x-nodes in the region - 2 < x  < O .  Evidently Re = 100 is sufficiently low to ensure that the 
diffusive error terms arising from a non-uniform grid (principally the C ,  term, see section 2.5 
and Figure 2(b)) are small compared with real diffusion. As is demonstrated below, this is clearly 
not the case at significantly higher Reynolds numbers. 

Figures 5(a) and (b) show the wall vorticity variations obtained at Re = 500, compared with 
the Dennis and Smith results. There are very significant differences, with the HODS results lying 
closest to the latter. A number of points are of interest. First, considering Figure 5(a), which 
presents results obtained using the same x-grid (G1/2) and two different y-grids, the G2Y results 
are in all cases noticeably worse than the G1Y results, despite the fact that near y = 0 and y = 0.5 
the former had significantly smaller y-mesh spacings. The most dramatic difference occurs in the 
VDSC case. Now, as pointed out in section 3.1, the refinement in Ay near y = 0 and y = 0.5 was 
obtained in G2Y by increasing the grid expansion ratios. As shown in Figure 3 this always leads to 
increases in the magnitude of the coefficient of the ‘diffusive’ error term (Cl),  so at sufficiently 
high Reynolds numbers it is possible for these error terms to be comparable with the real 
diffusion-even in the case of the higher order schemes. In addition, at Re = 500 there are 
substantial areas of the flow field in which mesh Peclet numbers based on Ay and the lateral 
component of velocity are higher than two, so that upwinding (whether HYDS or HODS) is 
used in the u-component momentum equation rather than central differencing. These results 
suggest that quite small increases in the mesh expansion ratios can have noticeable effects 
although, again, it should be emphasized that the wall vorticity is a particularly sensitive indicator. 

Figure 5(b) shows wall vorticity results obtained using HYDS and HODS on a grid which 
has much larger mesh spacings near the corner (Ax = 0012, Ay = 0.012), but about the same 
number of nodes and consequently rather smaller expansion ratios everywhere (less than 1.15). 
The results are compared with those obtained using G1. It is evident that the HODS solution 
is relatively insensitive to this change, whereas the HYDS results show noticeable differences. 

In Figure 6 the VDSC, HYDS and HODS solutions (on grids G1/2) for the axial velocity 
components around separation are compared. As anticipated from the results in Figure 5(a), 
there is a marked difference between the two VDSC solutions. The one obtained using G2Y 
contains large scale ‘oscillations’ in the u-profile which are markedly reduced in the G1Y solution. 
Now recall that the G2 grid has a finer distribution of y-nodes around y = 0.5, but the same 
x-mesh. This leads to many more mesh cells having a high aspect ratio (AxlAy) in regions of the 
flow where u/u is not negligible, so that the full, vector scheme uses downstream nodes in a larger 
region of the flow. As noted in section 2.3, this has a destabilizing effect, and evidently the 
Reynolds numbers are sufficiently high in this case to cause unphysical spatial oscillations. 
Figure 6 includes the results obtained by using the original procedure suggested by Raithby4 
when tan-’(u,/u,) > 2Ayj/Axi+, (see Figure 1). In these circumstances, 4e is set equal to 4 i , j - l ,  
rather than interpolating between the latter and c # ~ ~ +  l , j-  ,. This eliminates the spatial ‘wiggles’ 
entirely, although the results are still noticeably different from the more accurate HODS solution 
(see also Figure 5(a)). 

Overall, it seems that the use of HODS has enabled quite an accurate solution to be obtained 
upstream of the step for Re = 500 but, even for this scheme, mesh expansion ratios should be 
kept low ( r  < 1.2, say). The first-order schemes are significantly less accurate and are more sensitive 
to changes in mesh expansion ratios, as suggested by the analytic results described in section 2.5 
(Figure 2). Furthermore, although vector schemes have some apparent advantages, the full 
version is susceptible to spatial instabilities probably arising from the use of downstream nodal 
values-this problem is compounded even in regions of relatively low transverse velocities when 
mesh aspect ratios are high. 
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Figure 5. Wall vorticity upstream of step, Re = 500. (a) W ,  HODS; A ,  HYDS; 0 ,  VDSC: grid 2. Open symbols are for 
grid G1. , Dennis and Smith solution. (b) Legend as in (a) with dashed symbols refering to grid G3 

(Ax, Ay = 0.012 at the corner) 
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Figure 6. Velocity profiles near separation ( x  = -0.29), Re = 500. Legend as in Figure 5(a), with 0. VDS (Raithby) 
on grid G2 

3.3. Solutions for x > 0 

3.3.1. Re = 100. In the light of the results for x > 0 and the statements of Dennis and Smith 
concerning their Re = 100 solutions, little difficulty was anticipated in obtaining reasonably 
accurate results for this case, at least if HODS were used. In terms of overall flow parameters this 
turned out to be the case in the sense that wall pressure and velocity profiles obtained from HYDS 
and HODS solutions on various grids showed close agreement, to graphical accuracy at least, in all 
cases. 

However, in the viscosity-dominated region near the corner this was not the case. In Figure 7 the 
wall vorticity results are compared with those of Dennis and Smith on their two finest uniform 
grids   AX,^ = 0.0125 and 0.0167). There are clearly major differences for x < 0.2. Now the finest 
grid (in the corner region) used in the present calculations was G2, with Ax = 0.001, Ay = 0.003 
around x = 0, y = 0.5 and this is very much finer than the finest grid of Dennis and Smith. Since the 
vorticity is singular at the corner it seems reasonable that, provided mesh expansion ratio errors 
are not too important, the G2 solution will be the most accurate near the corner. It should be 
emphasized that all our computations employed central differencing in this region since the mesh 
Reynolds numbers are inevitably very low. Defining the Stokes radius as v/u,, the G2 grid has 
about six nodal points (in the x-direction) nearer to the corner than this value-00133 for 
R e =  100-so it was possible to test the internal consistency of the numerical solutions by 
comparing them with the analytic solution for the viscous flow around the corner. The latter 
can be obtained by solving the 'slow-flow' approximation to the Navier-Stokes equations for 
flow in the vicinity of a singular point on a solid b o ~ n d a r y . ~ ~ , ~ ~ , ~ ~  It w' ill always be valid in a 
region sufficiently near the singularity, typically within a distance of the order of the Stokes 
radius from the corner. 

3.3.2. The Stokes cornerflow. Sufficiently near the corner diffusion dominates and the flow must 
satisfy the bi-harmonic stream-function equation V4$ = 0. Blowers34 has shown, using 
W e i n b a ~ m ' s ~ ~  solution, that for flow round an external corner of angle a =  3x/4 the solution is 
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Figure 7. Wall ;orticity, x > 0, Re = 100. ., HODS; A, HYDS; 0 ,  VDSC: grid G2. Open symbols are for grid G1 and 
dashed symbols are for grid G3. , Dennis and Smith (Ax, Ay = h/8O); ---, h/60 

Figure 8. Notation for the viscous corner flow 

where 

f l  (e) = cos (me) + p cos [(m - 2)el ,  

fz(0) = sin(&)+ qsin[(n-2)8] 

and 

and m = 1.5445, n = 1.9085, p = cot (ma) and q = - tan(na). A and B are arbitrary constants 
corresponding to the symmetric and antisymmetric parts of the solution, whose values depend on 
the external (inertial) flow field. The polar co-ordinate notation is defined in Figure 8. Higher-order 
solutions can be obtained from the full Navier-Stokes equations by adding appropriately derived 
terms to the first-order t,b(') solution, and it is straightforward to obtain the vorticity distribution 
from - pw = VZ$. The first-order solution is 

(JO) = - v[Ar*-zg,(e) + ~ r n - ~ g ~ ( e ) ] ,  
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with 

gl(Q) = 4p(m - 1 )  cos [(m - 2)8] 

and 

g2(Q) = 4q(n - 1) sin [(n - 2)8] 

Now our numerical solutions were obtained from the primitive equations, so it is convenient to use 
the results for the velocities u and v. These can be easily derived from the I) solution. 

Using the finest corner grid (G2) HODS solution, the two parameters A and B were found by 
fitting the resulting expression for u to the computed values at two mesh points nearest the corner. 
Analytic profiles of u and u were then compared with the computed results at all other points 
around the corner. Table 111 presents a direct quantitative comparison for the u velocity, for the 
two cases obtained by forcing agreement at the points ( - 0.0012, - 0.0015) and ( - 0~0012,00015) 
or ( - 0.0012, 0.0015) and (0, 0.0015). The A and B values were - 31.1, 50.7 and - 32.0, 66.5, 
respectively. Qualitatively it is clear that the agreement is good in the region x',y' < 10.0051 but 
becomes less satisfactory at larger distances from the corner. Figure 9 compares the analytic 
velocity profiles along the lines x' = 0, y' = 0 with numerical solutions obtained on grids G2 
and G3 (the coarsest near the corner) using HYDS, HODS and VDSC. I t  is evident that not 
only are the finest grid solutions consistent with the analytic Stokes flow solution near the corner, 
and accurately so up to a distance equal to about half the Stokes radius (v/u, = 0.0133), but also 

Table 111. Comparison of analytic and numerical solution for u in the corner region. See 
Figure 8 for x, y definitions 

- x' Y' HODS A = - 31.1 A =  -32 
(G2) B = 50.7 B = 66.5 

Analytic Analytic 

0.005 1 - 0.0045 

+ 0.00 1 5 
+ 0.0045 

0.00285 - 0.0045 
- 0.00 1 5 

- 0.0015 

+ 00015 
0.0045 

0.00 1 2 - 0.0045 
- 0.00 1 5 
+ 0.0015 
+ 0.0045 

0.0 0.001 5 
0.0045 
0.0085 

-0.001 125 0.00 1 5 
0.0045 
0.0085 

- 0.0025 0.00 1 5 
0.0045 
0.0085 
0.00 1 5 
0.0045 
00085 

- 0.004 175 

0866 
1.750 
3.53 
4.97 
0.322 
0.955 
3.29 
4.79 
0.057 
0.302 
3.01 
4.5 1 
2.52 
417 
5.68 
1.83 
3.78 
5.42 
1.29 
3.29 
5.06 
0.907 
2.75 
4.62 

0.974 
1.999 
3.75 
5.37 
0.355 
1.099 
3.32 
5.08 
0.06 1 
0.302 
3.01 
4.7 1 
2.54 
4 3  1 
5.90 
1.77 
3.84 
5.39 
1.15 
3.23 
4.93 
0.794 
2.585 
3.362 

0.995 
2.024 
3.75 
5.30 
0.365 
1.120 
3.33 
4.99 
0.063 
0.310 
3.01 
4.60 
2.52 
4.18 
5.45 
1.72 
3.67 
5.07 
1.07 
3.03 
4.58 
0.702 
2.36 
3.98 



810 
A 

Y *  
0'04 t 6 d  

d d  

0.03 L 
M 

r. 
m 
M 

0.021 

0 0.2 0.1 0.6 0.8 0 0.2 0.1 0.6 

Figure 9. Velocity profiles in the corner region, Re = 100. , analytic solution with A = - 31.1, B = 50.7. 
(The Stokes radius is about 0.013). Legend as in Figure 5(a) 

that there are only small differences between the finest and coarsest grid solutions, independent 
of the differencing scheme used. In this region, of course, central differencing is involved in all 
the schemes, because of the low mesh Reynolds numbers, but the A and B values are essentially 
set by the outer inertial flow, so we must again conclude that for the step flow at Re = 100, 
standard hybrid differencing is adequate for overall flow prediction. 

It is instructive to compare the wall vorticity predictions with the analytic solution obtained 
using the fitted A,  B values and with the Dennis and Smith predictions. This is done in Figure 10, 
where only the near corner region is shown; the best fit is obtained using the A,  B values found by 
considering the two nodes just upstream of the step. The finest grid solutions are not too dissimilar 
from the analytic solution, although computed vorticity values lie consistently higher than those 
obtained from the latter. As the grid becomes more coarse, the difference increases. Figure 7 shows 
that the vorticity predictions of Dennis and Smith are considerably higher than our results for 
x < 0.2. This is even true for the grid G3 results, which has near-corner mesh sizes not much 
smaller than those of the finest Dennis and Smith grid. Now the results of Dennis and Smith 
were obtained by solving the streamline/vorticity equations and this required a somewhat 
arbitrary procedure to specify boundary conditions near the corner in order to avoid having to 
use the nodal point coincident with the corner itself, where the vorticity is singular. Blowers3' 
has demonstrated the extreme sensitivity of vorticity solutions near the corner to the particular 
procedure chosen, and it seems that the methods used by Dennis and Smith lead to errors in 
wall vorticity values for x > 0 which are of the same sign as those produced by too coarse a 
grid. There seems no doubt that the claim of Dennis and Smith that 'graphical accuracy, at the 
very least, is assured by the finest grid solutions' (Ax, Ay = 0.0167) is somewhat optimistic. 
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Figure 10. Wall vorticity in the corner region, Re = 100. Analytic solution with A = - 31.1, B = 50.7: 
A = - 32, B = 66.5: Legend as  in Figure 5(a) 

It is worth emphasizing again the relative sensitivity of wall vorticity to numerical deficiencies. 
Whereas the velocity variations obtained from the HYDS and HODS solutions on grid G3 for 
Re = 100 were virtually indistinguishable for x < 0, separation took place noticeably earlier than 
predicted by the grids having a finer distribution near x = 0. As noted earlier, the HODS solutions 
were less sensitive than the HYDS solutions to grid variations. Similarly, despite quite significant 
differences in wall vorticity for x > 0 (Figure 10) velocity profiles in this region were, again, found to 
be graphically indistinguishable in all our Re = 100 solutions. 

We conclude that the overall flow properties can be adequately predicted with hybrid 
differencing at Re = 100, but fine details, such as the exact separation location or wall vorticity near 
the corner, are rather sensitive to variations in gridding, although less so if higher-order 
differencing is used. 

3.3.3. Re = 500. Numerical predictions of wall vorticity obtained for Re = 500 are shown in 
Figure 11. Because of the difficulties with the VDSC solutions discussed in section 3.2, only 
HYDS and HODS results are shown. It is immediately apparent that in all cases a separated 
region is predicted, in complete contrast to the finest prediction of Dennis and Smith (with 
A x , A y  = 00125). Even the HYDS solution on the G3 grid, which has mesh spacings similar to 
those of Dennis and Smith the corner, indicates separation around x N 0.045 with subsequent 
reattachment near x = 0.2. This, again, must indicate the inadequacy of the Dennis and Smith 
procedure for assigning wall vorticity boundary conditions near x = 0. In fact Dennis and Smith 
explicitly state in this case that ‘it is possible that the solution is affected by the presence of the 
singularity in vorticity at the corner’. 

Although the HYDS and HODS solutions on the finest grid (G2) are very close for x < 0.1, there 
is substantial divergence further downstream, with the HYDS solution leading to reattachment 
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Figure 11. Wall vorticity, x > 0, Re = 500. Legend as in Figure 7 

much earlier than the point suggested by the HODS solution. Beyond separation near x = 0.005 
the larger numerical errors present in the HYDS solutions lead to very significant ‘thickening’ and 
subsequent early reattachment of the separated shear layer. This inevitably leads to noticeably 
different velocity profiles downstream. Figure 12(a), for example, compares profiles at x = 0, 0.25 
and 1.0. Despite the broad agreement between HYDS and HODS (on the finest grid) at x = 0, there 
is substantial disagreement at x = 0.25. The larger scale plot in Figure 12(b) emphasizes the 
increasing differences between HYDS and HODS solutions with distance downstream. Beyond 
reattachment the differences reduce; this is to be expected since the flow will be asymptotic to the 
basic Poisseuille channel flow, for which hybrid differencing will be essentially as accurate as 
higher-order schemes, since longitudinal velocity gradients are identically zero. 

For this higher Reynolds number case the region near the corner within which the analytic 
Stokes’ flow solution can be expected to be valid is obviously much more restricted than at 
Re = 100. The Stokes radius is about 0.003 and grid G2 has a few points within that distance 
from the corner. A fit to the computed u-velocity at the points ( -  0~0012,0~0015) and (0,0.0015) 
yields A = - 54.8 and B = 224.8. The ratio - B / A  is therefore 4.1, which is about twice its value 
in the Re = 100 case. Recall that since B represents the antisymmetric part of the viscous solution, 
- B/A is expected to rise as inertial effects in the outer flow become relatively more significant. 
Figure 13 shows the resulting analytic wall vorticity, compared with the numerical results. All 
the latter are, again somewhat higher than the former, but the fine grid solutions agree remarkably 
well with the analytic results if a second-order correction to do) is included.34 This leads to a 
predicted separation point at x = 00038, which is very close to that indicated by the grid G2 
results (HODS or HYDS). 

Figure 13 also shows the significantly greater sensitivity of HYDS to grid changes; this is evident 
also in Figure 12(b), from which it is clear that HODS yields a velocity profile near x = 0 (with G3) 
much closer to the fine grid G2 results than the more numerically viscous HYDS can achieve. 
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Figure 12. (a) Velocity profiles, x > 0, Re = 500. m, HODS; A ,  HYDS; grid G2. Note origin shifts for increasing x (open 
symbols for x = 1.0). (b) Difference in velocity profiles for HYDS and HODS, Re = 500. x = : A, 0.0 0 ,  0.25; 0, 1.0 

4. THE FLAT PLATE FLOW 

4.1. Geometry and Gridding 

Figure 14 shows the geometry and boundary conditions for the second problem. This is 
essentially the same as that previously studied.6 In the earlier work it was found that generally 
vector schemes performed much better than the standard hybrid scheme but were inevitably little 
better than the latter in certain regions of the flow. In particular, along the stagnation streamline 
total energy was not conserved because there VDS reduces to HYDS. In the present study the work 
has been extended by adding the source corrections (VDSC) and by using, alternatively, the higher- 
order upwind scheme (HODS). Because of the interesting possibility of multiple solutions for free 
wake flows at higher Reynolds numbers (bifurcations) we have concentrated on the case in which 
the splitter plate is removed and a simple symmetry condition imposed instead. The problem is 
then a (confined) free wake flow, and a separate study is under way on the asymptotic solution as 
Re+ 
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Figure 13. Wall vorticity in the corner region, x 0, Re = 500. Legend as in Figure 7. , first-order; 
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Figure 14. Geometry of flat plate flow. Upstream boundary at x / h  = - 20 
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The gridding arrangements are also rather different to those used in the earlier work. All the 
solutions presented here were obtained with the same y-grid, given in Table IV. The x-grid was 
Reynolds number dependent. Since the Stokes' radius at the corner is inversely proportional to 
Reynolds number and the boundary layer thickness on the front of the plate is inversely 
proportional to JRe ,  the upstream grid (x < 0) was arranged in two sections. First, the minimum 
mesh spacing-at the plate itself-was set as a/Re and then there was a uniform expansion 
upstream up to the nominal edge of the boundary layer, taken as 2fl/ JRe ,  with usually four to eight 

Table IV. Nodal values for basic grid used in Re = 100 
solutions of the flat plate flow; grid F1, R e =  100. See 

Figure 14 for co-ordinate definition 

x < o  x > o  Y 

- 20000 
- 18.182 
- 14.545 
- 11.636 
' - 9.308 
- 7.445 
- 5.955 
- 4.763 
- 3'809 
- 3.045 
- 2.435 
- 1.946 
- 1.555 
- 1.242 
- 0.992 
- 0791 
- 0631 
- 0.503 
- 0400 
-0.318 
- 0.253 
- 0.200 
- 0.158 
- 0123 
- 0.0935 
- 0.0689 
- 0.0484 
- 0.03 13 
- 0.01 70 
- 00050 

0.0050 
0.0180 
0.035 1 
0.0570 
0.0863 
0124 
0.174 
0238 
0.322 
0.432 
0.575 
0.762 
1,006 
1.325 
1.740 
2.283 
2.99 1 
3.914 
5.120 
6.693 
8.746 

11.426 
14.922 
19.485 
25.44 
33.21 
43.35 
56.59 
73.86 
82.50 

000 
0.02 
0.06 
0.1 1 
016 
0.22 
0.30 
0.40 
050 
060 
0.70 
078 
0.85 
090 
0.93 
0.96 
0.98 
0993 
1.007 
1.02 
1.04 
1.07 
1.11 
1.15 
1.19 
1.24 
1.32 
1.42 
1.55 
1.70 
1.90 
2.20 
2.60 
3.05 
3.60 
4.05 
4.40 
4.70 
490 
5.00 
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points within this region. Secondly, a further uniform expansion took the grid from this boundary 
layer edge to the upstream boundary at x / h  = - 20. Generally c( and fl  were unity and there were 30 
points for - 20 < x /h  < - a/(2 Re).  Downstream of the plate the mesh expanded uniformly over 
generally 30 points to a downstream location which was a linear function of Re,  and typically two 
to three recirculation region lengths (L,) beyond the plate. Arguments presented by Castro et ~ 1 . ~  
suggest that L, K Re and our higher order solutions all have that behaviour, as shown later. 
Table IV gives a typical x-grid for Re = 100, where Re = hu/v. The effects of variations in the grid 
will be discussed where appropriate. Note that for this confined flow the recirculation region width 
does not change for R e  > 50 (hence our fixed y-grid), whereas increases in R e  lead to increases 
in x-grid mesh expansion/contraction ratios. Values of the latter for the case given in Table IV 
are 0.8 (for - 20 < x/h < - 2 / J R e ) ,  0.83 (for - 2 / J R e x / h  < - 1/Re)  and 1.3 (for x / h  > l / R e ) .  

4 .2 .  The upstream pow, x < 0 

It was shown by Castro et aL6 that neither the hybrid nor the simpler vector schemes conserve 
total energy in regions where the convective terms are balanced largely by pressure gradients. The 
present results showed that adding the source correction term almost completely eliminated this 
kind of error at low Reynolds numbers. However, at Re = 100 it proved very difficult to obtain a 
properly converged solution. Adding just half of the total source correction did give a solution, and 
in that case the error was reduced by only a factor of about two. As noted earlier the source 
correction has an inherently destabilizing effect and it would seem that unless more robust 
algorithms for solving the difference equations are used, not all the potential benefit of the source 
correction will always be realizable. 

In Figure 15(a) a comparison of the variation in total head along the upstream stagnation 
streamline is shown for Re 100, using HYDS, VDSC and HODS; only half the source correction 
is applied in VDSC. It is evident that HODS generates the smallest errors, although if all the source 
correction could be applied in the VDSC case the latter would probably be equally good. The 
errors in the HODS solution arise from the non-uniform grid; the contraction ratio in the x-grid 
was 0.8 over most of the x < 0 region and this is clearly sufficiently far from unity to lead to 

J -0.OL 

-vh 7 6 5 L 3 2 1 0 
1 

0 

0 -0.02 

Figure 15. Total head variations along the upstream stagnation streamline at R e =  100: (a) A ,  HYDS; 0, VDSC; ., HODS. Grid Fl .  (b) 0, VDSC; W ,  HODS. Grid F1. Open symbols are for grid F2 
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perceptible, but small, errors (see Figure 2). Since the inlet velocity was constant across the channel, 
the total head should have remained at its uniform inlet value everywhere outside the viscous 
regions-not simply along the stagnation streamline. Further plots of A H / H ,  against x/h at 
various y/h confirmed the above conclusion that HODS was generally significantly better at 
conserving energy, even in regions of strong lateral velocities and cross-stream gradients, than any 
of the other schemes (VDS, VDSC or HYDS). In addition, it was consistently easier to obtain 
converged solutions than it was using the VDSC scheme. 

As found in the forward-facing step flow, HODS was also much less sensitive to changes in grid 
expansion ratios. Figure 15(b) illustrates this. The total head changes for VDSC and HODS at 
Re = 100 shown in Figure 15(a) are compared with those which occur using a rather different 
x-grid, in which only 24 points were used for x < 0 (F2). The grid contraction ratio was 
consequently rather smaller (0.77, cf. 0.80). It is evident that the difference in A H  for the two 
grids is typically three times larger for the VDSC solution than for the HODS solution. 

Careful scrutiny of the solutions for x < 0 showed in addition that the VDSC results contained 
‘wiggles’ which grew larger with Reynolds number but were entirely absent in the HODS results. It 
was also found that increases in grid refinement could lead to larger instabilities, as found earlier 
(section 3.2). Tests showed that the ‘wiggles’ were not in this case the result of the inclusion of the 
source term in the VDS scheme and neither were they a result of using thefull vector scheme rather 
than the original simpler Raithby version. They were symptomatic of the increasing difficulty in 
obtaining convergence as the Reynolds number was increased. 

It is worth pointing out that in this flow, even at Re = 100, there were substantial areas of the flow 
domain in which lateral mesh Reynolds numbers (Ayulv)  exceed two. Figure 16 shows part of 
the boundaries of these regions. This certainly increases the possibilities of spatial instabilities 

‘in VDSC solutions and may well be partly the cause of those noted above and also those in 
the Re = 500 step flow solutions (Figure 6). 

4.3. The downstream p o w ,  x > 0 

In the earlier study it was found that a Galerkin finite element solution of this flow-but with a 
downstream splitter plate-gave a rather thicker separated shear layer than the VDS solution at 
the same x/h, despite a significantly longer distance to reattachment. Figure 17 shows velocity 
profiles just downstream of separation (x/h = 05) obtained from VDSC and HODS solutions of 
the Re = 100 flow. A similar difference is apparent, with the HODS profile having a rather lower 
velocity gradient in the shear layer. The VDSC solution looks much less reasonable near the outer 
edge of the shear layer and it would seem that the possible ‘overshoots’ inherent in the scheme are 

-_._..-.. *~.----- 
Symmetry axis 

Figure 16. Hatched regions show (part) of the area in which the lateral mesh Reynolds number exceeds two. Longitudinal 
mesh Reynolds numbers were below two only in an extremely small region around the plate. The Figure is to scale and 

was obtained from results on grid F l  at Re = 100 
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significant in this region. This could be the cause of the higher velocity gradients, which are 
maintained throughout the wake flow. Again, the ‘wake closure’ point nevertheless occurs 
significantly further downstream in the HODS solution. (Reattachment is an inappropriate term in 
the present case without a splitter plate.) HODS gives L,/h = 31.4, compared with the VDSC result 
of 263. The simple vector scheme (VDS) reduces this overshoot substantially but also gives a low 
value of LJh(26). 

Figure 18 shows the variation of L,/h with Re, obtained using HYDS, VDSC and HODS. Two 
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U 4 
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additional results from a Galerkin finite element solution are included (Cliffe, private communic- 
ation) and it is gratifying that the HODS results are very close to these. The standard hybrid 
scheme is of course quite unsatisfactory; once Re > 100, the solutions become independent of Re 
since the viscosity is virtually all 'numerical'. We were also able to obtain some VDSC solutions on 
a 70 x 40 grid, which was essentially identical to the basic 60 x 40 grid for x < 0 but had 10 extra 
nodes for x > 0 (i.e. 40 instead of 30). In this case converged solutions at Re = 100 and 200 could be 
obtained with 0.7 of the full source correction included. The L, results are included in Figure 18 and 
it seems that further refinement could lead to solutions close to HODS and finite element results, at 
least as far as the L, value is concerned. 

Tests with different grids showed again a much greater dependence of the VDSC solutions on 
the grid expansion ratios and on details of the grid around the separation point. The centre-line 
velocity variations for x > 0 shown in Figure 19 typify these effects. Figure 19(a) shows results for 
HODS on the basic grid (Fl, Table IV), a grid in which the x-mesh spacing at the fence was five 
times that in the basic grid (i.e. 0.05) with 24 points in x < 0 and 36 for x > 0 (F2), and a grid which 
had the same basic F1 mesh at the plate but only 20 points for x < 0 and 40 for x > 0 (F3). In 
addition a further coarser grid solution is shown, with 20 points for x < 0,20 for x > 0 and a mesh 
size at the plate of twice the basic value (F4). This grid has only two x-nodes in the downstream half 
of the recirculating region! Figure 19(b) shows corresponding results obtained using VDSC. 
Details of the grid expansion ratios are given in Table V. 
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Figure 19. Wake centre-line velocity variations, Re = 100. Grid , Fl;  0, F2; A ,  F3; 0 ,  F4. (a) HODS. (b) VDSC; d, F1; 
VDS (Raithby); , smooth line through HODS results in (a) 
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Table V. Salient details for grids used for flat plate solutions 

X Y Ax No. of r values 
at fence nodes x < 0  x > o  

x < o  

F1 60 x 40 0.0 1 30 1.25 1.30 
F2 60 x 40 0.05 24 1.21 1.17 
F3 60 x 40 0.0 1 20 1.3 1.12 
F4 40 x 40 0.02 20 1.2 1.5 

Two major points should be noted. First, it is clear that the VDSC solutions give a much more 
rapid velocity recovery through the wake closure point than shown by the HODS results. 
Secondly, whereas the HODS results are practically independent of the grid details-even the 
course 40 x 40 solution is remarkably close to the others-this is not the case for the VDSC results. 
These show a continuous trend of increasing velocity recovery rate for decreasing expansion ratio 
in the wake region, so this effect must be a result of increasing the mesh spacings around separation 
(Fl-F2) or decreasing the contraction ratios for x < 0 (Fl-F3). The former seems rather more 
likely and certainly leads to the largest effect. 

It should also be noted that even for F1 the mesh spacing at the fence tip (Ax = 0.01,Ay = 0.014) 
is of the same order as the Stokes radius (O(v /U, ) ) ,  so we cannot make sensible comparisons 
between numerical results and the analytic Stokes’ flow solution for the corner region. This would 
require a grid with much smaller mesh spacings near the corner and correspondingly larger grid 
expansion ratios unless many more grid nodes were used. However, our earlier work showed that it 
was more important to maintain accuracy in the irrotational region up to and just outside the 
separating boundary layer than to resolve the boundary layer itself. The present work confirms 
that, and Figure 20 shows that HODS can be used to obtain solutions up to at least R e  = 500 
which, apart from the appropriate axial scaling with Re for x > 0, are accurately independent of Re. 
Details of the viscous regions very near the plate remain Reynolds number dependent, of course, as 
pressure distributions near the plate tip indicated. We believe that the result L,/h = 0.325 R e  - 2 is 
close to the exact solution for Re > 100. In addition, the plate base pressure and drag coefficients, 
C,, and C,, were essentially constant at - 1.87 and 2.5, respectively, once the Reynolds number 
exceeded about 200. 

5. CONCLUSIONS 

The overall conclusions from these studies can be summarized as follows. First, for the forward- 
facing step flow, standard hybrid differencing solutions were not significantly less accurate than 
those obtained using high.er-order algorithms or vector schemes, provided the Reynolds number 
was low (say, less than 100). Solutions obtained on the finest grids were close to those given by 
Dennis and SmithI9 upstream of the step itself, and increases of mesh size near the corner by even 
an order of magnitude only marginally effected the solution away from the corner. Around the 
corner itself, however, the results were noticeably different from those of Dennis and Smith, even on 
a similar grid. On the finest grid the solutions at R e  = 100 are consistent with analytic solutions of 
the Stokes’ flow problem, irrespective of the differencing scheme used, since all the latter reduce to 
central differencing near the corner. 

At high Reynolds numbers hybrid or vector differencing became increasingly inadequate, 
although in all cases and on all grids separation beyond x = 0 was predicted, in contrast to the 
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Figure 20. Wake centre-line velocity and static pressure variations, HODS. R e = :  A,lOO; 0, 200; ., 400; A, 500 
(C, = (P - P,)/tPU3 

results of Dennis and Smith. For x < 0, the higher-order scheme gave a solution very similar to that 
of Dennis and Smith. For x > 0 hybrid differencing caused early reattachment. We believe that the 
solutions for the forward-facing step flow obtained using HODS are quite accurate (at all Reynolds 
numbers) throughout the whole flow domain, even in the case of the coarsest grid solution. It does 
not seem necessary to use extremely fine mesh spacings everywhere, so that provided mesh 
expansion ratios are not too high, accurate solutions can be obtained using grids with fewer nodes 
than .in the finest Dennis and SmithIg solutions. 

Secondly, it is emphasized that only the linear higher order upwind scheme remains formally 
first-order accurate on a non-uniform grid (provided that control volume boundaries are located 
half way between the grid nodes); QUICK schemes are only zero-order accurate on non-uniform 
grids. The predictions confirm the implications of the numerical analysis (Figure 2) that non- 
uniform grids can lead to significant zero-order errors in the simpler schemes. In addition, hybrid 
and vector schemes show increasing sensitivity to changes in mesh expansion ratio as the Reynolds 
number rises. This effect was demonstrated by the results for both flows studied. It is much less 
significant in the case of the higher-order upwind scheme. 

Thirdly, vector schemes were found to be susceptible to spatial instabilities and/or overshoots, as 
previous workers have found. It was shown that in some circumstances high aspect ratio control 
volumes in the grid can give particular difficulty, but in any case for flow angles other than 
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0 and 45” to the grid lines the vector schemes are not necessarily diagonally dominant. There is 
therefore always the possibility of spatial wiggles developing in the solutions, and this tendency 
will increase with mesh Reynolds number. In contrast to the vector scheme solutions, HODS 
solutions of the flat plate problem appeared to be quite accurate; they showed the correct trends 
with Reynolds number and agreed closely with Galerkin finite element solutions. 

In the light of the above points, our major conclusion is that the higher-order upwind scheme is 
by far the best differencing scheme to use for the convective terms in the momentum equations, at 
least compared with standard hybrid or any of the vector schemes. It is diagonally dominant and 
therefore stable and is easier to code than either vector schemes or the formally (on a uniform grid) 
more accurate QUICK methods. The latter can give oscillations and are rather less robust than 
HODS. We do not believe that our results would be very different if alternative algorithms for 
solving the differenced equations had been used. 

Although we have not as yet studied HODS in the context of turbulent flows, there seems no 
reason to suppose that this conclusion would change. Indeed, in view of the additional inter- 
equation coupling and non-linearities it may well turn out that HODS is relatively even better in 
turbulent flows than in those we have studied. However, careful and detailed investigations of its 
performance in well-chosen turbulent flows should obviously be carried out. 
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